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Abstract. We prove that quantum fluctuations can suppress structural phase transitions. We 
give a rigomus pmof for a onesomponent (3%') quantum crystal with local double-well 
anharmonism under the condition that the masses of the atom in the lattice sites of Zd (d 2 3) 
are light enough. 

1. Introduction 

Rigorous proofs about the absence of spontaneous symmetry breaking started with the 
celebrated works of Mermin, Wagner and Hohenberg based on the Bogoliubov inequality 
[l-31. Originally the proofs were about continuous symmetry groups, and the theorems 
work as well for classical as for quantum systems. The type of systems considered showing 
absence of symmetry breaking were considered to have short-range interactions and low 
dimensionality. Later, techniques were developed in order to obtain similar results for 
discrete symmetries, based on energy-ntropy inequalities [4,5]. It was essential in this 
area that no genuine different physical ideas were implied for either classical or quantum 
systems or for this type of symmetry. 

These methods give immediate results for dimensions d = 1 and sometimes for d = 2, 
when thermal fluctuations are strong enough to destroy the order parameter. 

In this paper we want to add a new rigorous result to the field based on a new mechanism 
excluding spontaneous symmetry breaking, which has a typical quantum nature, i.e. it 
exploits the fact that quantum fluctuations increase when the mass of the particles becomes 
smaller. 

For heavy particles, rigorous results exist for spontaneous breaking of the symmetry in 
ferroelectrics for classical as well as for quantum systems [6-9]. The question concerns 
light particles. We prove for a quantum one-site anharmonic crystal model (structural 
instability or ferroelecmc model) that the quantum fluctuations are strong enough to destroy 
the spontaneous symmetry breaking if the particles are light enough. In the spherical 
approximation of anharmonic crystals, this fact is well known, see e.g. [lo] and [ I l l .  
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2. The model 

Let Z'' be a d-dimensional cubic lattice. At each lattice point 1 E Z" we associate a quantum 
particle of the mass m with position Ql E R' and momentum Pi such that [ f i ,  Ql] = 4. 
Let 7f = L2(R'), then with each A c Zd we associate the Hilbert space 7 i A  = @ll.A7f~ 
(tensor product of copies 'Hi = L2(R')). 

For each finite volume V = lAl the model Hamiltonian  HA(^) is a self-adjoint operator 

A Verbeure and V A  Zagrebnov 

HA(h) = TA + SA - Ch. Qi h ER' 
fEA 

with the natural domain D ( H A )  c 7in. Here 

where (for simplicity) we suppose that the harmonic matrix +p corresponds to the interaction 
between nearest-neighbour sites: +ti, = C S ~ ~ , ~ ~ , ~ , ) ;  01 = 1,2,. . . , d; c > 0. The site operator 
SA is given by 

SA = W(QI) (2.3) 
&A 

and represents (one-component) local anharmonic potentials in each I E Zd, we assume the 
following conditions on the potential: 

(a) ~ ( x )  E c@') 

(c) ~ I ( & x '  + W ( x ) )  = ;ux; + W(XO),  xo > 0 and x I+ $~ax2 + W ( x )  
(b) W ( X )  = W(-X)  (2.4) 

is monotonically increasing for x 2 XO. 

For standard examples (see e.g. [12]) one could refer to the case: 

4.Q: + W(Q0 = iaQ: + abQf a c 0, b > 0 

or to the case [ l o ] :  
+. +be-": a z 0, b z 0, q > 0. 

3. Order parameter 

(2.5) 

For each A c Zd we take local algebra of ohservables BA generated by the canonical 
position and moment operators Ql and Fj, I E A. The algebra of local observables of the 
system is then A = U,, BA. For temperatures T > 0 ( B  = l / k T  < CO), a state o(.) on A 
is an equilibrium state if it satisfies the energy-entropy balance correlation inequalities: 

o(A*A) 
fio(A*G(A)) 2 w(A'A)~ln - 

@(AA*) 
,t3 = l / k T  

for all A E A [13]. Here the derivation S is defined by the weak limit 

OJ(AS(B))  = l i p m ( A [ H ~ ,  BI) , .  A ,  B E A. ' (3.2) 

In writing this equilibrium condition, we assume implicitly that we are looking at those 
solutions OJ for which these limits exist. The existence of the limiting equilibrium states, 
limwA(.) = o(.) where OJA is the Gibbs state for the finite volume A, for quantum 

A 
. .  
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anharmonic crystals is considered in [14,15].' It is a consequence of the stability of the 
Ham'iltonian (2.1). . 

For any a E Zd we denote by ra the lattice translation *-automorphism defined on A 
by r,,Qf =~Ql,, rafi = e.+.. A state o is called lattice translation invariant if o . ro = o 
for all a E Zd .  

We are interested in the ergodic equilibrium states, i.e. the extremal lattice translation 
invariant states o h ,  determined by the Hamiltonian (2.1). If h = 0, the Hamiltonian has 
the &-symmetry with respect to the msformations Ql + -Ql for all 1. From (3.1) one 
obtains easily, the following properties. 

Proposition 3.1. Let ah(.) = limnof(.) be any limiting equilibrium state of (2.11, i.e. 
with 

then the state oh( . )  satisfies (3.1). 
If one takes periodic boundary conditions on the boundary aA one has 

~ f = o ( Q d  = 0 

but o,",,(Qr) > 0 and, 

Wh>o(Qd = (Q)h>o > 0 1 E .Zd. (3.3)~ 

From the time invariance of the state O h  one gets 

l i p o h ( [ f i .  Hn(h)]) = 0 for all I E Z d .  (3.4) 

We define the order parameter of the system by 

(3.5) 

~Jf (e)+ # 0,'then the system shows spontaneous &-symmetry breaking, which yields a 
structural phase transition for this system. Hence if one can show that (&)+ = 0, one 
proves the absence of the structural phase transition in this model. 

Using the so-called infrared bounds [16,17], the Trotter product formula approximation 
for Gibbs semigroups [IS] and the localization bound [I91 for a fixed mass m large enough, 
say for m larger than some M, one can prove (see [SI and [9]) that there exists a critical 
temperature Tc(m) > 0, such that for all T e T,(m), the &-symmehy of the state oh=o(.) 
is broken. One proves in fact that 

showing that the limit state Wh=O(') is not extremal. However, when the mass is too small, 
m e M ,  the infrared bound analysis proving (3.6) breaks down. 

Our aim is now to prove that for light atomic masses m, say smaller than some critical 
mass m, c M, but for all temperatures T 0, the order parameters (e)+ vanish, i.e. 
(Q)* = 0. According to common wisdom 1171, one has that (e)+ 2 U. Therefore (e)+ 5 0 also implies U = 0 for m < m, and all T 2 0. We will show that this is a 
consequence.of the large quantum fluctuations, due to the small size of the atomic masses 
m. 
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We start the proof of this ‘no-go theorem’, first, by assuming the following technical 
condition on the potentials which is in addition to (2.4) but not really a limitation of the 
generality; we assume 

(i) a < 0 
(ii) W‘(x) = xV(x2) 

We derive a first result from proposition 3.1. 

(3.7) with V : B: + R:, monotonic and V” > 0. 

Conditions (2.4) and (3.7) are satisfied by examples (2.5). 

Proposition 3.2. For any translation invariant equilibrium state we obtain 

-a(Q)t = (w’(Q))+. (3.8) 

This follows immediately from formula (3.4) using the explicit form of the 
0 

Proof. 
Hamiltonian (2.1) and after taking the limit h -+ Of. 

4. Correlation inequalities and main results 

For the anharmonic potential W, satisfying conditions (2.4) and (3.7), we get the following 
crucial inequality, using the Feynman-Kac representation. 

Proposition 4.11. For all finite temperatures, one obtains 

W’(Ql))+ > (Ql)tO‘(Q:))t. (4.1) 

Proof. The proof is done via the following steps: 

inequality for each finite volume A c b, namely 
(i) By proposition 3.1, it is clear that for inequality (4.1), it is sufficient to prove the 

w,”,o(W’(Q~)) > w,”,o(QO&O(V(Q:)). 

(ii) Now we use the explicit form of the Gibbs state wk (proposition 3.1) in its Wiener 
integral representation [20, 211. By the Feynman-Kac formula. one gets for any 1 E A, that 

(4.2) 

where 

Q!,x=f,(o) = Er( . )  E W O ,  PI): cm = M P )  = XI 

is the space of closed continuous trajectories starting at x ,  and where 
B 

dbt,x (0 = Z;’ d& (5) exp [ - d r  (%YO) - h W ) ]  

with d&() the Wiener measure on Qt.,, and 

mo = (; i cd) 5 2  + W ( 0  

(iii) If one takes f(Ql) = W‘(Ql), then inequality (4.1) is a Griffiths-KelleySheman 
(GKS) inequality for our‘ ferromagnetic system state (4.2), see e.g. [XI. 
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In order to check this we follow the line of reasoning inspired by [21, ch Iv]. First we 
use the Trotter product formula for the Gibbs semigroup exp(-bIfA(h)), and obtain 

Using the result of [16], one obtains 

5 lim ukn(A). 
n-m 

Now one checks easily (see e.g. [21, ch IV]) that the lattice approximation utn(.) of the state 
(4.2) in the direction [O, PI yields a ferromagnetic state on the lattice A x  10, !, :, ..., PI. 
Therefore we have the~GKS inequality 

&o,n(W’(Qi)) > on,o..tQi)wn”,o,.(V(Q:)). A 

The proposition follows,  by^ taking the limits, first n + 00, then A + Zd &d h + 0’. 0 

Combining the results of proposition 3.2, formula (3.Q and proposition 4.1, formula 
(4.1). one obtains for all temperatures T: 

-4Q)+ 2 (Q)+(V(Q%+. (4.3) 
Now we start the final argument. Suppose there exists for some temperature T, a state 

with a non-zero order parameter (e)-+ # 0. Take (e)+ > 0, then it follows from (4.3) that 

-a 2 (v(Q*))+. (4.4) 
We will work towards a contradiction of (4.4). by proving that (4.4) is violated for 
all temperatures if the mass m is small. enough. To this end note first that using the 
ferromagnetic character of the system (see (4.2)) again and the inequality (4.1), and the 
convexity of the function V (3.7), one obtains 

Proposition 4.2. 

(V(Qf))+(T) > V((Qf)+(T)) > V((Q:)(T s o ) )  (4.5) 

where (.)+(T) is the state (.)+ at the temperature T. 
Furthermore, in the Hamiltonian (2.1), the interaction term is given by 

(4.6) 

and because c is taken to be positive, the system is of ferromagnetic type. Considering the 
derivative of the expectation value OJ&~(Q?) only with respect to this coupling constant 
(i.e. not a derivative with respect to the constant c, which also appears in the self-energy 
@), one obtains (see [21] again), on the basis of the GKS inequality, 

Proposition 4.3. 

&oCQf) > &~(Q:)o (4.7) 

where the right-hand side means the expectation value of Q: for the non-interacting system 
with c = 0 in the term (4.6), i.e. for the quantum lattice system of independent sites. 
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Collecting together the results (4.5) and (4.7) one gets, from (3.7). 

(V(Qf))+(T) 2 V((Q:)+.o(T 0)) (4.8) 
where the right-hand side expectation is taken for the quantum lattice system of independent 
sites, given by 

HO.A = Ho.1 
lEA 

(4.9) 

with $ ( x )  = ($U + cd)x2 + W ( x ) ,  (see proof of proposition 4.1). This means that 

(4.10) 
where $0 E Lz@’), is the ground-state wavefunction for the Schriidinger operator (4.9). 

In the following, we study.the behaviour of the ground-state fluctuation ($0, QZ$o) of 
the position operator Q if the mass m of the particle is small. We prove that this fluctuation 
diverges in the limit of small masses. 

Proposition 4.4. Suppose that the asymptotics of the one-site potential 6’ behaves as 
w ( x )  - IxIY, y > 0 for large values of 1x1. Denote A = m-*/(’+Y) and Eo(m). the 
ground-state energy for the Hamiltonian (4.9). Then for m small one has 

(Q:)+,o(T = 0) = ($0. Q2@o) 

(i) .&n) - A Y  

(ii) ($0, Q%o) - A’. 
Proof. From the assumption of the asymptotic behaviour of the potential one can write 

@ ( x )  = A b l y  + U ( X )  6 Clxlq q -= y 

with A > 0. After rescaling x + A-’x = z one gets, for the Schrodinger equation, 

here @t(z) = A”2@~(Az). 

Otherwise, (ii) follows from 
Considering the limit m 4 0 (A -+ co), one can conclude immediately the result (i). 

(@01x2@o) = ~ 2 ~ , d z z 2 1 @ ~ ( z ) 1 2 .  

U 

We have now derived sufficient results with which to formulate our main statement, 

Theorem 4.5. For m small enough, system (2.1) does not show &-symmetry breaking for 
all temperatures T > 0, i.e. (Q)*(T)  = 0. 

Proof. Suppose that there exists a,state such that (e)+ > 0, then from (4.4) 

-a 2 (V(Qz))+. 
However, using the monotonicity of V (see (3.7)) and (4.8), one obtains 

-a 2 V((Qz)+.o). 

(Vi(Q2)+.0) > tal 

However, from proposition 4.4, it follows that there is a m, such that 

form .c mc, which is a contradicition. Hence (e)+ = 0. 0 
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